Monday, July 13, 2020

PCR (Polymerase Chain Reaction)

PCR
Polymerase chain reaction (PCR) is a method widely used to rapidly make millions to billions of copies of a specific DNA sample, allowing scientists to take a very small sample of DNA and amplify it to a large enough amount to study in detail. PCR was invented in 1984 by the American biochemist Kary Mullis at Cetus Corporation. It is fundamental to much of genetic testing including analysis of ancient samples of DNA and identification of infectious agents. Using PCR, copies of very small amounts of DNA sequences are exponentially amplified in a series of cycles of temperature changes. PCR is now a common and often indispensable technique used in medical laboratory and clinical laboratory research for a broad variety of applications including biomedical research and criminal forensics.

The majority of PCR methods rely on thermal cycling. Thermal cycling exposes reactants to repeated cycles of heating and cooling to permit different temperature-dependent reactions – specifically, DNA melting and enzyme-driven DNA replication. PCR employs two main reagents – primers (which are short single strand DNA fragments known as oligonucleotides that are a complementary sequence to the target DNA region) and a DNA polymerase. In the first step of PCR, the two strands of the DNA double helix are physically separated at a high temperature in a process called Nucleic acid denaturation. In the second step, the temperature is lowered and the primers bind to the complementary sequences of DNA. The two DNA strands then become templates for DNA polymerase to enzymatically assemble a new DNA strand from free nucleotides, the building blocks of DNA. As PCR progresses, the DNA generated is itself used as a template for replication, setting in motion a chain reaction in which the original DNA template is exponentially amplified.

Almost all PCR applications employ a heat-stable DNA polymerase, such as Taq polymerase, an enzyme originally isolated from the thermophilic bacterium Thermus aquaticus. If the polymerase used was heat-susceptible, it would denature under the high temperatures of the denaturation step. Before the use of Taq polymerase, DNA polymerase had to be manually added every cycle, which was a tedious and costly process.

Applications of the technique include DNA cloning for sequencing, gene cloning and manipulation, gene mutagenesis; construction of DNA-based phylogenies, or functional analysis of genes; diagnosis and monitoring of hereditary diseases; amplification of ancient DNA; analysis of genetic fingerprints for DNA profiling (for example, in forensic science and parentage testing); and detection of pathogens in nucleic acid tests for the diagnosis of infectious diseases.


Saturday, July 11, 2020

CRISPRCas9

CRISPRCas9

CRISPR-Cas9 is a method of genome editing that exploits a natural DNA-snipping enzyme in bacteria, called Cas9 (CRISPR-associated protein 9) to target and edit particular genes. CRISPR stands for Clustered regularly interspaced short palindromic repeats, which are segments of DNA of a particular structure found widely in bacteria and archaea (prokaryotes). In the wild, the CRISPR-Cas9 system is part of the prokaryotic immune system, which can snip out of the genome DNA acquired from foreign sources such as phages (bacterial viruses). The same molecular machinery is now being used to enable genetic material to be cut from and pasted into the genomes of other organisms, including eukaryotes such as humans. It might offer a tool for curing genetically based diseases.
DNA has become a versatile polymeric substrate for making nanotechnological structures and artificial molecular-scale machinery for computation, pattern formation, and nanoscale assembly. For several decades now, these efforts have drawn on methods developed in and for biotechnology, and similarly they are likely to find ways of exploiting the advantages of the new technique called CRISPR/Cas9 for manipulating DNA. #CRISPRCas9

CRISPR-Cas9 is a method of genome editing that exploits a natural DNA-snipping enzyme in bacteria, called Cas9 (CRISPR-associated protein 9) to target and edit particular genes. CRISPR stands for Clustered regularly interspaced short palindromic repeats, which are segments of DNA of a particular structure found widely in bacteria and archaea (prokaryotes). In the wild, the CRISPR-Cas9 system is part of the prokaryotic immune system, which can snip out of the genome DNA acquired from foreign sources such as phages (bacterial viruses). The same molecular machinery is now being used to enable genetic material to be cut from and pasted into the genomes of other organisms, including eukaryotes such as humans. It might offer a tool for curing genetically based diseases.
DNA has become a versatile polymeric substrate for making nanotechnological structures and artificial molecular-scale machinery for computation, pattern formation, and nanoscale assembly. For several decades now, these efforts have drawn on methods developed in and for biotechnology, and similarly they are likely to find ways of exploiting the advantages of the new technique called CRISPR/Cas9 for manipulating DNA.